

Biología Nivel superior Prueba 1

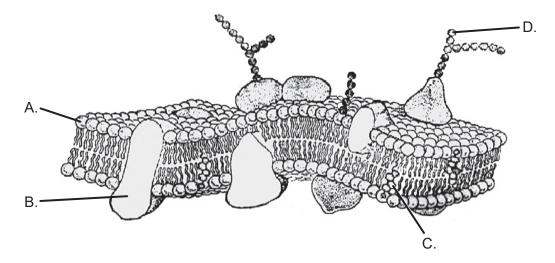
Miércoles 15 de noviembre de 2017 (tarde)

1 hora

Instrucciones para los alumnos

- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.
- La puntuación máxima para esta prueba de examen es [40 puntos].

La siguiente imagen de un Paramecium se utilizará en la pregunta 1 y en la pregunta 2.

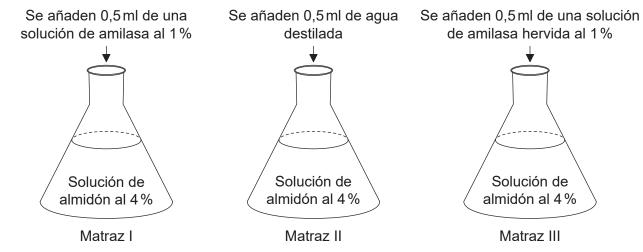

[Fuente: adaptado de www.biology-resources.com. Derechos de autor 2004–2017 D G Mackean y lan Mackean. Todos los derechos reservados.]

1. ¿Qué funciones desempeñan las estructuras X e Y del *Paramecium*?

	X	Υ
A.	digestión	homeostasis
B.	alimentación	metabolismo
C.	almacenamiento de alimentos	movimiento
D.	replicación del ADN	respiración

- **2.** La concentración de sal en el interior del *Paramecium* es del 1,8 %. La concentración de sal en el medio circundante cae de repente al 0,2 %. ¿Cuál será la respuesta más probable?
 - A. La célula perderá sal vertiéndola al medio.
 - B. La vacuola contráctil expulsará más agua.
 - C. La célula se hinchará y acabará estallando.
 - D. La membrana se volverá más permeable a la sal.

La siguiente figura de una membrana se utilizará en la pregunta 3 y en la pregunta 4.


[Fuente: © Organización del Bachillerato Internacional, 2017]

- 3. ¿En dicha figura, qué estructura es una proteína intrínseca o integral?
- **4.** De la estructura de membrana que aparece en la figura anterior, ¿a qué parte pertenece la siguiente molécula?

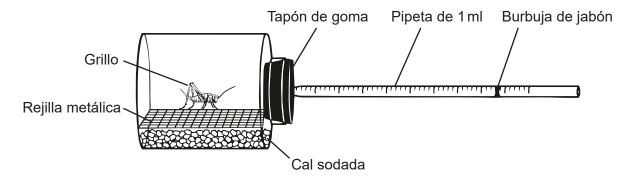
5. ¿Cuál(es) de estas moléculas contienen enlaces peptídicos? ¿Y cuál(es) son moléculas de azúcar?

	Contienen enlaces peptídicos	Son moléculas de azúcar
A.	I, III	II
B.	III	II, IV
C.	I, III, IV	Ш
D.	I	III, IV

6. Se preparan tres matraces para analizar la actividad de la amilasa. En el instante cero se añaden cada una de las sustancias que se indican en la figura.

- ¿Con qué matraz o matraces se podría comprobar la hipótesis de que el calor desnaturaliza las enzimas?
- A. Los matraces I y II, al cabo de 15 minutos
- B. Los matraces II y III, al cabo de 15 minutos
- C. Los matraces I y III, al cabo de 15 minutos
- D. El matraz III en el instante cero y también al cabo de 15 minutos
- 7. ¿Por qué descubrimiento sobre el ADN son conocidos Watson y Crick?
 - A. El ADN es la molécula de la que están compuestos los genes.
 - B. En un organismo, la cantidad de adenina siempre es igual a la cantidad de timina.
 - C. Los enlaces fosfato-pentosa que hay a lo largo de la columna vertebral de nucleótidos son de tipo covalente.
 - D. El ADN tiene forma de doble hélice.

8. ¿Qué secuencia de bases y aminoácidos se podría producir mediante la transcripción y la traducción de la siguiente molécula de ADN?

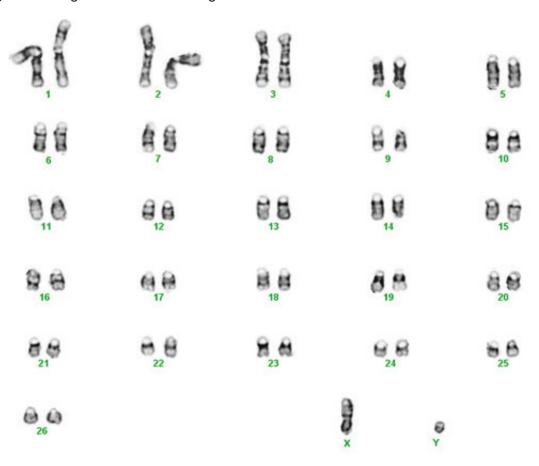

3'ATGAAATGCTTTCGCGGG 5' 5'TACTTTACGAAAGCGCCC 3'

2ª base del codón

		U	С	Α	G		
	U	Fen Fen Leu	Ser Ser Ser	Tir Tir STOP	Cis Cis STOP	U C A	
		Leu	Ser	STOP	Tri	G	
		Leu	Pro	His	Arg	U	
Şn		Leu	Pro	His	Arg	С	ယ္မ
po	С	Leu	Pro	Gln	Arg	Α	
<u>e</u>		Leu	Pro	Gln	Arg	G	base (
1ª base del codón	•	lle	Tre	Asn	Ser	U	del o
		lle	Tre	Asn	Ser	С	codón
	Α	lle	Tre	Lis	Arg	Α	ón
		Met	Tre	Lis	Arg	G	
		Val	Ala	Asp	Gli	U	
	G	Val	Ala	Asp	Gli	С	
	G	Val	Ala	Glu	Gli	Α	
		Val	Ala	Glu	Gli	G	

	Secuencia de bases	Secuencia de aminoácidos
A.	UAC-UUU-ACG-AAA-GCG-CCC	Leu-Lis-Cis-Fen-Arg-Gli
B.	GGG-CGC-UUU-CGU-AAA-CAU	Gli-Arg-Fen-Arg-Lis-His
C.	AUC-AAA-UGC-UUU-CGC-GGG	Met-Lis-Cis-Fen-Arg-Gli
D.	UAC-UUU-ACG-AAA-GCG-CCC	Tir-Fen-Tre-Lis-Ala-Pro

9. Un grillo se metió durante diez minutos en un respirómetro que estaba a temperatura constante. La burbuja de jabón se fue desplazando a lo largo de la pipeta.

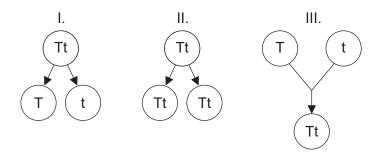


[Fuente: © Organización del Bachillerato Internacional, 2017]

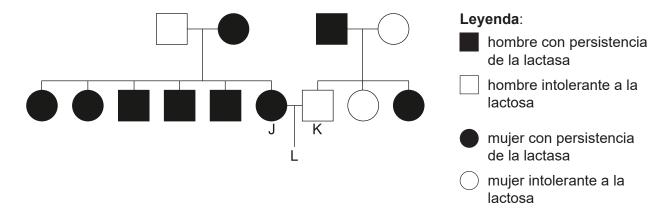
¿Qué se pudo medir utilizando el movimiento de la burbuja de jabón?

- A. La producción de dióxido de carbono
- B. El volumen de los productos excretados
- C. El consumo de oxígeno
- D. La liberación de calor

10. La siguiente imagen muestra un cariograma.



[Fuente: https://commons.wikimedia.org/wiki/File:Karyotype_of_sheep_(Ovis_aries).png, por M. Singh, X. Ma, E. Amoah y G. Kannan]


¿Qué información se puede extraer de este cariograma?

- A. El sexo es femenino.
- B. El número haploide es 54.
- C. Se produjo una disyunción durante la meiosis.
- D. La especie no es humana.

11. ¿Qué diagrama(s) representa(n) procesos que tienen lugar en la reproducción asexual?

- A. Solo I
- B. Solo I y II
- C. Solo II
- D. I, II y III
- **12.** Un alelo autosómico dominante que codifica la persistencia de la lactasa les permite a los seres humanos digerir la leche siendo adultos. Las personas a las que les falta este alelo tienen intolerancia a la lactosa cuando son adultos.

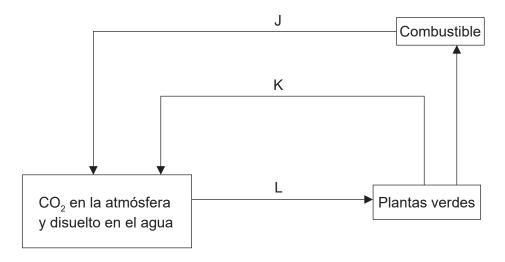
Si J y K tienen un hijo o una hija L, ¿qué probabilidad habrá de que L tenga persistencia de la lactasa?

- A. 25%
- B. 50%
- C. 75%
- D. 100%

13. HindIII es una endonucleasa que reconoce la secuencia AAGCTT y corta entre las dos adeninas.

5'TTAAGCTTAAGAAGAAGCTT3' 3'AATTCGAATTCTTCTTCGAA5'

¿En cuántos fragmentos de ADN cortará HindIII esta cadena?

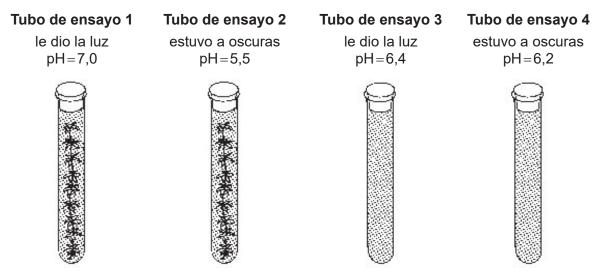

- A. 2
- B. 3
- C. 4
- D. 5
- **14.** En una zona de bosque que mide 100 m por 100 m se recogen muestras para estimar cuántos árboles de tipo arce plateado (*Acer saccharinum*) hay en el bosque. A continuación anotan el número de árboles que han contado en cada una de las cinco zonas de 400 m² que han analizado.

	3			
			5	
4		5		
			8	

Aproximadamente, ¿cuántos arces plateados hay en toda esa zona de 10 000m² de bosque?

- A. 5
- B. 25
- C. 125
- D. 625

15. El siguiente diagrama muestra el ciclo del carbono.



[Fuente: © Organización del Bachillerato Internacional, 2017]

¿Qué dos procesos representan las flechas rotuladas?

- A. K es combustión y L es catabolismo.
- B. J es anabolismo y K es respiración.
- C. J es combustión y K es respiración.
- D. J es anabolismo y L es catabolismo.

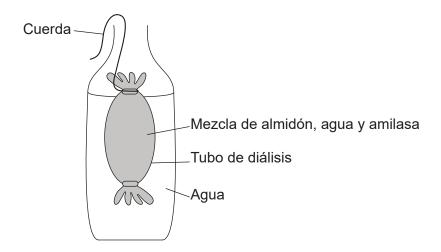
16. Se realizó el siguiente experimento, donde cada tubo de ensayo contenía agua con un pH de 6,3 y un indicador de pH. Los tubos de ensayo 1 y 2 contenían también un autótrofo que suele encontrarse en los estanques. El dióxido de carbono se disuelve en el agua y forma ácido carbónico. Al cabo de tres días, se encontraron los siguientes resultados en estos cuatro tubos de ensayo:

¿Qué conclusión se puede extraer de los resultados del tubo de ensayo 1 y del tubo de ensayo 2?

	Tubo de ensayo 1	Tubo de ensayo 2	
A.	la fotosíntesis ha utilizado CO ₂	la respiración ha producido CO ₂	
B.	la fotosíntesis ha hecho que el agua sea más ácida	la respiración ha hecho que el agua sea menos ácida	
C.	se ha producido fotosíntesis pero no ha habido respiración	ha habido respiración pero no se ha producido fotosíntesis	
D.	no se puede extraer ninguna conclusión porque el pH de los controles ha variado		

17. La siguiente tabla muestra el número de diferencias que hay entre el ser humano y otros organismos seleccionados en lo que respecta a la proteína citocromo c oxidasa. Esta proteína, que consta de 104 aminoácidos, se encuentra en la mitocondria y se comporta como una enzima durante la respiración celular.

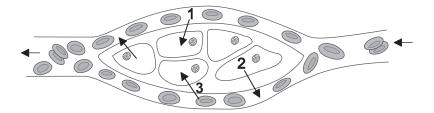
Pares de organismos	Número de diferencias en los aminoácidos
Ser humano – chimpancé	0
Ser humano – mosca de la fruta	29
Ser humano – caballo	12
Ser humano – paloma	12
Ser humano – serpiente de cascabel	14
Ser humano – mono Rhesus	1
Ser humano – mosca del gusano barrenador	27
Ser humano – tortuga mordedora	15
Ser humano – atún	21


Si se utilizaran los datos para dibujar un cladograma, ¿qué cordados son los que estarían más lejos del ser humano?

- A. El chimpancé, porque hay cero diferencias
- B. La mosca de la fruta, porque es donde más diferencias hay
- C. El atún, porque es el cordado con el que hay más diferencias
- D. El caballo, porque pertenece a la misma clase
- 18. ¿Qué provoca el que haya variación dentro de una población?
 - A. Fertilización y cambios en el medio ambiente
 - B. Fertilización y mutación
 - C. Mutación y evolución
 - D. Evolución y radiación adaptativa

19.	De los siguientes	organismos q	ue tienen	asignadas la	is letras A–D,	¿cuál re	presenta a un re	ptil?

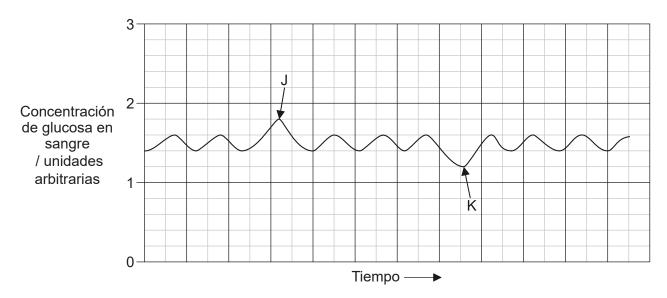
1.	aletas, branquias, corazón de 2 cavidadespez
	sin aletas, más de 2 cavidades en el corazónir a 2
2.	piel recubierta de mucosidad, branquias y pulmones A.
	sin branquias, respira por medio de pulmonesir a 3
3.	escamas secas, pone huevos en tierra o es vivíparo B.
	temperatura corporal constante, 4 extremidades ir a 4
4.	pone huevos que tienen la cáscara dura
	pelo o pelaje, es vivíparo


20. La siguiente membrana de diálisis se diseñó de modo tal que modelizara la digestión y la absorción que se producen en el intestino delgado.

¿Qué limitación tiene este modelo?

- A. No puede producirse transporte activo.
- B. La maltosa atravesará la membrana.
- C. La lipasa debería estar presente junto con proteína.
- D. La membrana no es permeable al almidón.

21. La siguiente figura muestra una serie de glóbulos rojos y de células tisulares indiferenciadas.

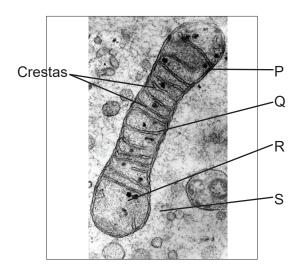

[Fuente: © Organización del Bachillerato Internacional, 2017]

En esa figura, la flecha 3 representa la difusión del oxígeno desde las células sanguíneas hacia las células tisulares. ¿La difusión de qué moléculas aparece representada por la flecha 1 y la flecha 2?

	Flecha 1	Flecha 2
A.	dióxido de carbono	urea
B.	agua	glucosa
C.	glucosa	dióxido de carbono
D.	ácidos grasos	aminoácidos

- 22. ¿Qué puede proteger al organismo, impidiendo la pérdida de sangre?
 - A. Anticuerpos
 - B. Fibrina
 - C. Histaminas
 - D. Hemofilia
- 23. ¿Qué tipo de célula está especializada en facilitar el intercambio de gases?
 - A. Los neumocitos de tipo I
 - B. Los neumocitos de tipo II
 - C. Las fibras de los músculos intercostales internos
 - D. Las fibras de los músculos intercostales externos

- **24.** ¿Qué sucede cuando un potencial de acción alcanza una placa motora terminal?
 - A. Las fibras musculares absorben iones de calcio.
 - B. Los sarcómeros se relajan.
 - C. Se libera un neurotransmisor.
 - D. El potencial de acción se transfiere a la neurona.
- **25.** El siguiente gráfico muestra cómo varía con el tiempo la concentración de glucosa en sangre de una persona.

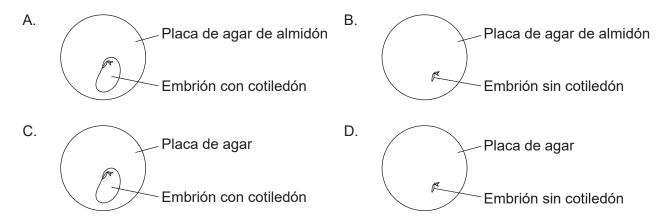

¿Qué hormonas se segregaron en J y en K?

	J	K
A.	epinefrina	insulina
B.	insulina	glucagón
C.	glucagón	insulina
D.	tiroxina	epinefrina

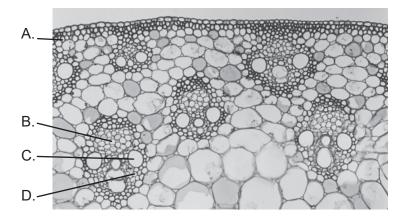
- **26.** Algunas regiones del ADN no codifican la producción de proteínas. ¿Para qué sirven estas regiones del ADN?
 - A. No tienen ninguna función conocida y se reciclan para proporcionar nucleótidos
 - B. Regulación génica y codificar la producción de las enzimas que se emplean en la traducción
 - C. Telómeros y codificar la producción de ARNt
 - D. Intrones y codificar la producción de proteínas estructurales
- 27. ¿Qué letra (A–D) es la que indica el lugar donde se fijaría un nuevo nucleótido?

- 28. ¿Qué componente celular es el que sintetiza actina y miosina?
 - A. Ribosomas libres
 - B. Retículo endoplasmático rugoso
 - C. Retículo endoplasmático liso
 - D. Membrana nuclear

- 29. ¿Cuál de las siguientes reacciones no provoca una liberación neta de energía?
 - A. El ADP se combina con un fosfato inorgánico para formar ATP
 - B. El ATP libera un fosfato inorgánico para formar ADP
 - C. La pérdida de hidrógeno por parte del NAD reducido
 - D. La oxidación del FAD reducido
- **30.** ¿Qué proceso tiene lugar durante la reacción dependiente de la luz de la fotosíntesis?
 - A. Se produce ATP, CO₂ y H₂O.
 - B. Se utiliza CO₂ para producir glúcidos.
 - C. Se produce ATP y O_2 .
 - D. Se fosforila la RuBP.
- **31.** La imagen muestra parte de una célula con una mitocondria.



[Fuente: 'TEM of a mitochondrion' por Prof. R. Bellairs. Crédito: Prof. R. Bellairs. CC BY 4.0.]


¿Dónde se produce la glicólisis? ¿Y el transporte de electrones?

	Glicólisis	Transporte de electrones
A.	Р	R
B.	R	Q
C.	R	R
D.	S	Q

32. El agar es un medio de cultivo sin nutrientes; el agar de almidón es agar al que se le ha añadido almidón. A las semillas se les quitó la piel y se utilizaron dichas semillas para crear las siguientes condiciones. ¿Qué embrión de planta fue **incapaz** de crecer?

33. ¿Cuál es la letra que identifica al floema?

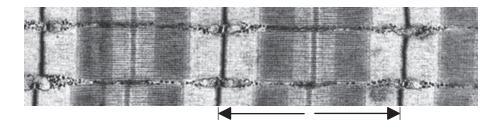
[Fuente: E R DEGGINGER/Getty Images]

- **34.** El papel de cloruro de cobalto es azul cuando está seco pero se vuelve rosa con agua. Se coge una hoja de una planta y se ata papel de cloruro de cobalto a las superficies superior e inferior de la hoja. Al cabo de 20 minutos se observan muchos puntos rosas pequeños en el papel de la superficie inferior y unos pocos puntos rosas en el de la superficie superior. ¿Qué conclusiones se pueden extraer?
 - I. Hay más estomas en la superficie inferior que en la superficie superior.
 - II. La cutícula cerosa bloquea los estomas de la superficie superior de la hoja.
 - III. Se produce más transpiración a través de la superficie inferior que a través de la superficie superior.
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III

- **35.** ¿En qué se diferencian los conceptos de gradualismo y de equilibrio puntuado?
 - A. En el ritmo de la evolución
 - B. En el mecanismo que provoca la evolución
 - C. En la secuencia de sucesos evolutivos
 - D. En la realidad de la evolución
- **36.** En una planta dada, las hojas oscuras son dominantes frente a las hojas pálidas y las semillas amarillas son dominantes frente a las semillas blancas.

Una planta heterocigota de hojas oscuras y con semillas amarillas se cruzó con una planta de hojas pálidas y semillas blancas. De esta manera se generaron un gran número de descendientes. Dichos descendientes fueron o bien de hojas oscuras y con semillas amarillas o de hojas pálidas y con semillas blancas, y hubo el mismo número de cada tipo.

¿Cuál es la causa más probable de este patrón?


- A. Se ha producido sobrecruzamiento.
- B. Los dos genes están ligados.
- C. Los rasgos son poligénicos.
- D. Los genes son codominantes.
- 37. ¿Qué conforma la base de la inmunidad después de la vacunación?

	Producción de histaminas	Selección clonal	Producción de células de memoria
A.	SÍ	no	no
B.	sí	no	sí
C.	no	sí	no
D.	no	sí	sí

38. ¿Para qué procesos se necesita calcio?

- I. Contracción muscular
- II. Movimiento de un potencial de acción a lo largo de un axón
- III. Producción del esqueleto de los corales duros
- A. Solo I y II
- B. Solo I y III
- C. Solo II y III
- D. I, II y III


39. ¿Qué estructura indican las flechas?

[Fuente: cortesía de Roger Craig, University of Massachusetts.]

- A. Una fibra muscular
- B. Un sarcómero
- C. Una miofibrilla
- D. Una línea Z

40. La siguiente figura muestra el aparato reproductor femenino.

[Fuente: © Organización del Bachillerato Internacional, 2017]

¿Cuáles son las estructuras rotuladas como K y L?

	K	L
A.	endometrio	pared uterina
B.	placenta	endometrio
C.	amnios	placenta
D.	feto	pared uterina